

CONCRETE DURABILITY

JÜRG SCHLUMPF SIKA SERVICES AG / TARGET MARKET CONCRETE

BUILDING TRUST

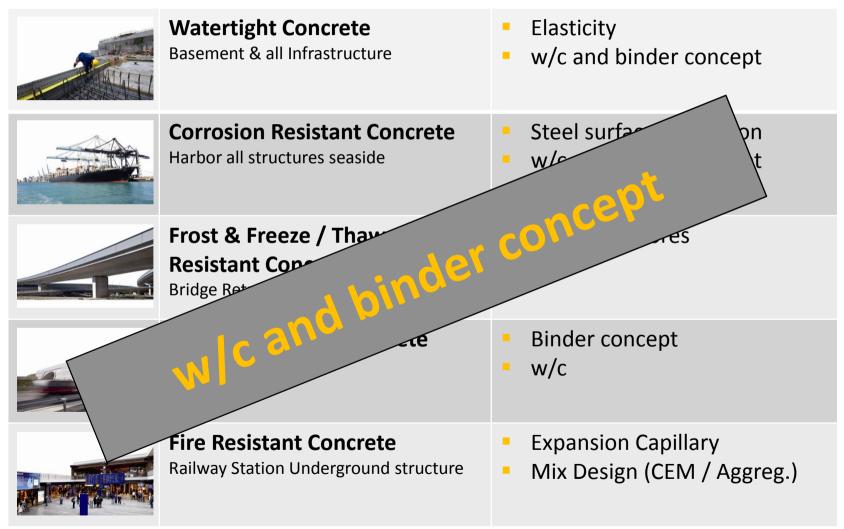
CONCRETE DURABILITY SPEAKER

Jürg Schlumpf (Smurf)
Swiss; 52 years old; married; two children 20 & 22 years old

Education

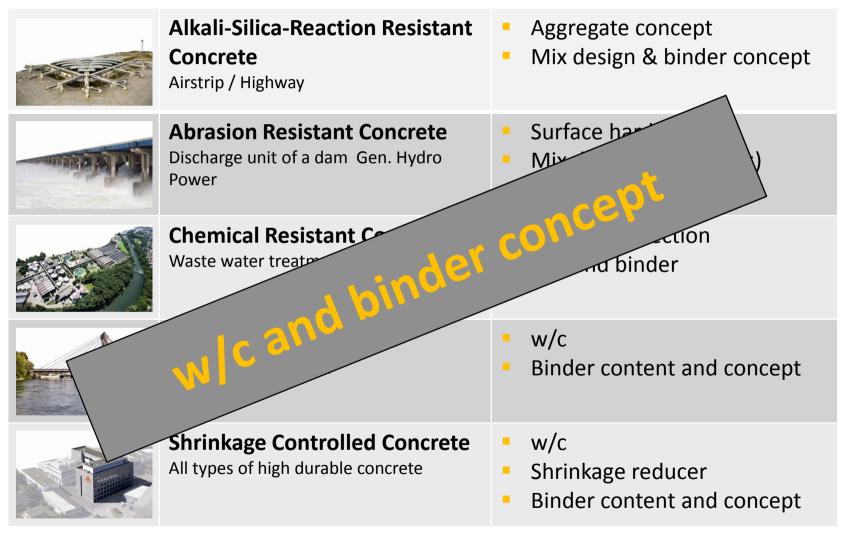
Technical Draftsman, Construction Builder (Mason), Civil Engineer HTL, Marketing Planer FH

Actual position (23 years with Sika)
Corporate Target Market Manager Concrete


Highlights

Implementation of PCE's admixtures in Sika Sika[®] ViscoCrete[®] Development of Concrete Systems for the Gotthard Base Tunnel Build up Concrete Academy Market introduction of the Sika[®] ViscoFlow[®] slump retention technology

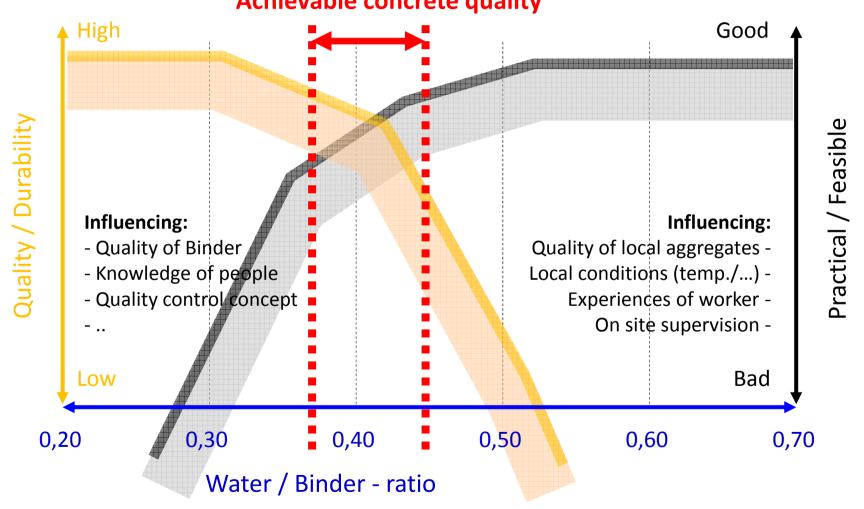
CONCRETE DURABILITY CONCRETE REQUIREMENTS


Quality I

CONCRETE DURABILITY CONCRETE REQUIREMENTS

Quality II

CONCRETE DURABILITY FROM SIKA-1 TO SIKA VISCOCRETE


Concrete Porosity

Mix 1: Initial mix design			2.45	1.1.2
Cement denisty				kg/m3
Cement content			320	kg/m3
Water content	173	liter	0.54	w/c-ratio
Water demand for Hydration			0.38	w/c-ratio
Difference	51	liter	0.16	w/c-ratio
ore quantity (based on the Concrete volume)			5.1%	
Pore quantity (based on the Cement stone)			18.7%	
Mix 2: optimized Water content				
Cement denisty			3.15	kg/m3
Cement content			320	kg/m3
Water reduction by using a WR / HRWR			20%	
Water content	138	liter	0.43	w/c-ratio
Water demand for Hydration			0.38	w/c-ratio
		1	0.05	w/c-ratio
Difference	17	liter	0.05	M) e l'atte
	17	liter	0.05	Initial Mix
	17	liter	1.7%	Initial Mix

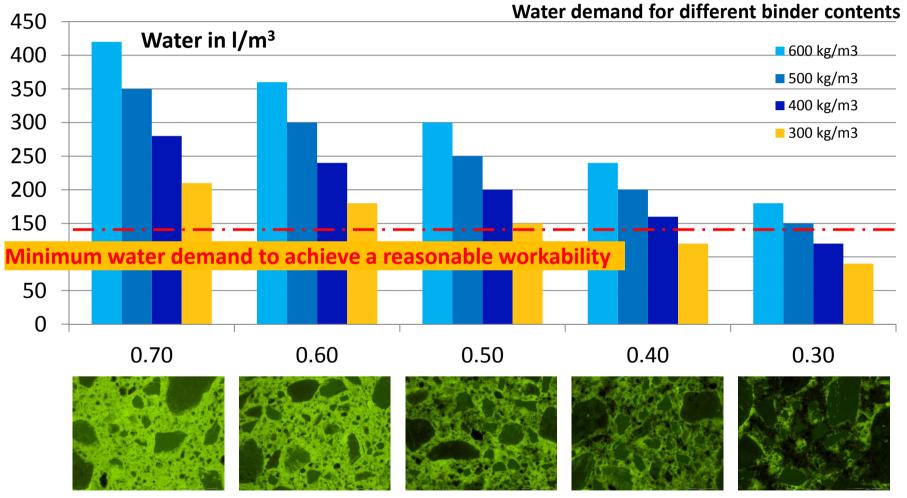
BUILDING TRUST

CONCRETE DURABILITY LIMITS OF WATER REDUCTION

BUILDING TRUST

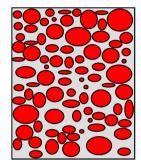
Achievable concrete quality

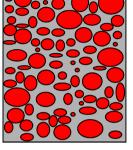
CONCRETE DURABILITY LIMITS OF WATER REDUCTION


w/c ratio; consequences

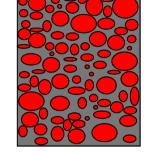
Required w/c ratio	Therefore min. Water content	Cement content to achieve	Comments
0.50	approx. 140 l/m³	≥ 280 kg/m ³	Workability must be ensured Example: Pumped concrete: Total ≤ 0.125mm: ≥ 400 kg/m ³ Self-compacting concrete : Total ≤ 0.125mm: ≥ 500 kg/m ³
0.40	approx. 140 l/m ³	≥ 350 kg/m ³	It must be possible to achieve the required softness (liquefaction) with water reducers (HRWR)
0.30	approx. 140 l/m ³	≥ 450 kg/m ³	Shrinkage may not over-compensate for the benefits of the low W/C, Example: Cement content 500 kg/m3: →Ecs (182d): 0.55‰ Cement content 250 kg/m3: →Ecs (182d): 0.30‰

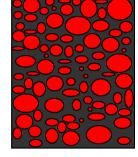
CONCRETE DURABILITY FROM SIKA-1 TO SIKA VISCOCRETE


Water reduction limits



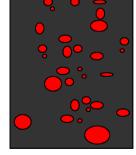
CONCRETE DURABILITY PASTE VOLUME OPTIMIZATION


Concrete with different paste quality will have different mechanical strengths.

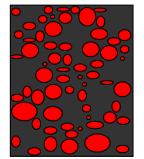

W/C=0.75 350 kg/m³ 30 N/mm²

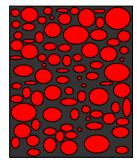
W/C=0.65 350 kg/m³ 40 N/mm²

W/C=0.55 350 kg/m³ 50 N/mm²



W/C=0.45 350 kg/m³ 60 N/mm²


But concrete with different <u>paste volume but same paste quality</u> we will have "same" mechanical strengths.


W/C=0.65 1034 kg/m³ 40 N/mm²

W/C=0.65 600 kg/m³ 40 N/mm²

W/C=0.65 350 kg/m³ 40 N/mm²

W/C=0.65 200 kg/m³ 40 N/mm²

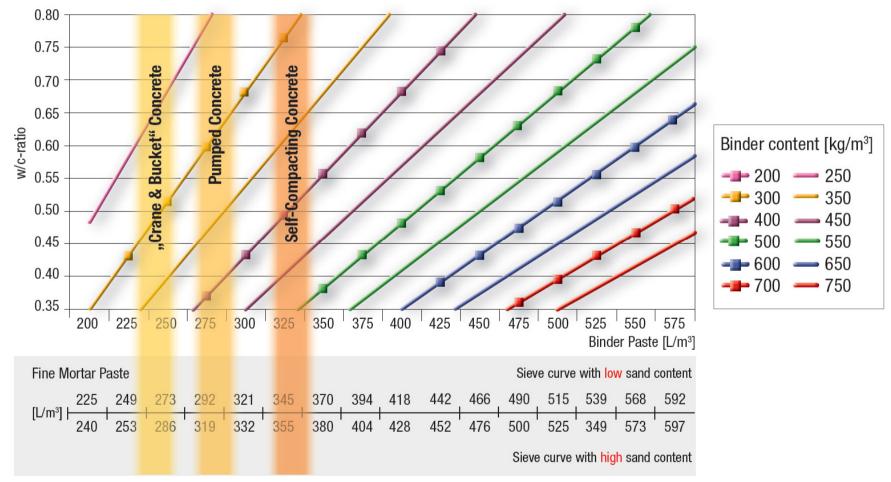
CONCRETE DURABILITY PASTE VOLUME OPTIMIZATION

Definition paste volume

"Crane & Bucket" Concrete 280 kg/m3 / w/c= 0.58 / 30% Sand with 10% fines (≤ 0.125mm) Cement paste 251 liter Fine paste 273 liter → 250l to 280l fine paste

Pumped Concrete

340 kg/m3 / w/c = 0.50 / 40% Sand with 10% fines (< 0.125mm)</td>Cement paste278 literFine paste306 liter2801 to 3201 fine paste


Self Compacting Concrete

420 kg/m3 / w/c = 0.42 / 50% Sand with 10% fines (< 0.125mm)</td>Cement paste310 literFine paste343 liter \rightarrow 320l to 380l fine paste

CONCRETE DURABILITY PASTE VOLUME OPTIMIZATION

Definition paste volume

CONCRETE DURABILITY COST SAVINGS – SAME PERFORMANCE

Argos Colombia

Paste Volume Optimized Concrete with **Sika® ViscoCrete®** *Life Cycle Impact Assessment*

CONCRETE DURABILITY COST SAVINGS – SAME PERFORMANCE

Argos Colombia

Life Cycle Impact Assessment

Life Cycle Impact Assessment of two concrete systems to compare the impact of the use of Sika® ViscoCrete®

Concrete System	s	Components				
		Cement	Additive	Sand / Gravel	Water	Concrete Admixture
Cement paste Fina paste	290 liter 321 liter	Cement Type I 327 kg/m³	-	798 kg/m ³ 916 kg/m ³	w/c-ratio = 0.57 187 liter	0.56% traditional Plasticizer
Cement paste Fine paste	242 liter 275 liter	Cement Type I 273 kg/m³	-	845 kg/m ³ 952 kg/m ³	w/c-ratio = 0.57 155 liter	0.38% Plastiment® 0.45% Sika® ViscoCrete

